Archive for the ‘Miscellaneous’ is_category>

Fronius’ New Hybrid Inverters Only Use BYD HVM/HVS Lithium Iron Phosphate Battery

Sunday, May 30th, 2021

Current Generation are distributors and integrators of the BYD are pleased to supply of batteries for Fronius inverter products,

Fronius, a premium inverter manufacturer which is well respected in the world, have chosen BYD as their battery partner, making BYD the only approved battery for use with the new Gen24 line of Fronius inverters. This move reaffirms the standing of the BYD products.


The high voltage BYD Battery-Box Premium Line has two models, the smaller HVS, and the larger HVM. The HV Premium Line from BYD is compatible with GEN24 Plus inverters, both the single phase Primo range and three phase Symo range.

The storage capacities available are 5.1–10.2 kWh for HVS and 8.3-22.1 kWh for HVM.

The voltages of the HVS and HVM differ. The more powerful HVS modules have a nominal voltage of 102.4 V each. By contrast, the HVM modules have a nominal voltage of 51.2 V per module. These different voltages subsequently lead to different charging and discharging characteristics.

Fronius has achieved a true grid back-up solution, with the BYD Battery-Box Premium HVS/HVM, allowing even three-phase loads to be used in a grid failure situation.

Like its predecessors, the Battery-Box Premium HVS/HVM is based on lithium iron phosphate – one of the most reliable storage technologies. The battery has a modular structure and can be expanded in steps of 2.6 kWh (HVS) or 2.8 kWh (HVM). This means that there is nothing to prevent the storage being expanded at a later date.

Another advantage of the BYD HVS/HVM is there is the option for the parallel operation of up to three battery storage systems. This enables higher storage capacities for larger household needs or small commercial systems.

The floor mounting allows the installation and commissioning process to be carried out quickly and easily.

By combining the BYD Battery-Box Premium HVS/HVM with other sectors such as heat supply or e-mobility, it is possible to achieve very high self-consumption rates and self-sufficiency levels. This results in maximum independence in the home.

Talk to Current Generation about your options, Trade enquiries welcome.

Posted in Miscellaneous

Wind Generators

Thursday, May 10th, 2018

What you need to know about small wind turbines?

New Zealand is a windy place and anything out there at the mercy of the elements must be capable of coping with our harsh environmental conditions. Current Generation supply Pinnacle wind generators. If you’re thinking of investing in a small wind turbine to generate electricity, here are some answers to some of the most asked questions.

What is a Wind Turbine?

Wind turbines are a clean and efficient method of turning raw kinetic wind power into electric power.

Wind turbines can be connected directly to machinery for mechanical energy or they can be connected to power generators and can create electricity. These three bladed structures, mounted on high poles or towers, are typically pointed into the wind using computers and sensors.

The wind turbine itself is made up of a rotor mounted to a wind turbine generator which is mounted to a frame and then a tail is mounted on the opposing side of the rotor.

If the wind turbine does not have a sensor based system pushing it into the wind, the tail will adjust it manually. Higher towers and broader rotors will generate more energy overall, so if you are considering the investment, understand that it is long term outlay and that the relatively low additional cost for a higher tower or larger rotor on your wind turbine will help offset the overall cost more quickly.

As you consider your investment in a wind turbine generator, consider a hybrid power system using solar electric panels as well. Depending on where you live the seasonality of wind speed and the amount of sunshine produced in the warm summer months, you may find that you’ll reap more benefits from using all of your natural resources to power your home rather than just one or the other.

A basic wind power system will consist of:

Wind turbine on top of a tower (1) that is wired down to a control box (2) that regulates the charging of a large deep cycle battery bank Inverter which draws electricty from the battery bank and converts to normal household electricity (AC) & feeds the appliances in the home with power as needed.

Various safety devices like fuses, breakers and lightning arrestors

Why buy a wind turbine?

Free energy for renewable energy installations comes mainly from the sun and the wind.
Wind turbines are the ideal partners for solar panels because when the sun is not out during the day, the wind is usually blowing if you’ve got a good wind turbine site.
At night there is no power from your solar panels, but it is often windy.
Wind turbines are also cheaper than solar panels for the same power output, although the overall cost of the energy installation must be considered.

How big should my wind turbine be?

This depends on how much energy you need, and how much is available from the wind at your site.

Evaluating your energy requirements is not too hard – it focuses on the various electrical appliances you have, how much power they use, and how often you use them.

If your intended site for the wind turbine is up on a hill or a ridge and/or is exposed to high prevailing winds, then there is a good chance that much of your energy can be supplied from the wind turbine.

Renewable energy installations for homes often have a 1 kW wind turbine that has a rotor that can be anything from 2.1m to 3.6m in diameter.

If you have larger energy requirements and you have a good wind resource, then a turbine might suit.

Where should I put it?

A windy place on your property is the obvious choice, but carefully consider the options before deciding on the best spot.

For example, although the edge of a cliff on a coastal property might be windy, don’t put your wind turbine there because abrupt changes in the landscape makes the wind do strange things and can adversely affect your wind turbine’s performance.

In general terms, a site that has at least a half acre of open land and average of 10 mph (16km/h) or higher winds is a good candidate for a wind turbine installation.

Pine trees can grow quickly, so don’t erect a turbine amongst young trees As a general rule, an exposed and elevated site with gentle surrounding contours (preferably flat) is the best.

Distance between your wind turbine and your house will vary from site to site, and there are ways of minimising the losses in your cable connecting the two, depending on the specifics of the machine you buy and your application.

Check with your local authorities for their requirements regards, height, distance from dwelling etc too!

How noisy are these things?

Noise is an issue for some people, and not for others.

It is subjective. If you are intending siting your machine close to your home and are worried about the noise, then buy a machine that is designed to be quiet.

In many cases you won’t be able to hear it no matter how noisy it is, because the wind itself creates noise around the house, trees and so on, or the machine is sited far enough away from your house.
Don’t be tempted to attach the wind turbine directly to your house, no matter how easy it looks to do. The vibrations and resonance from the turbine will keep you awake at night.

Posted in Miscellaneous

kW and kWh: What Does it Mean?

Friday, April 20th, 2018

This article was originally published on Solar Quotes, the original post can be found here.

So, what is a kW & a kWh?

And what is the difference between a kW and kWh?

An older style meter showing kWh

Let’s start with what each letter stands for:

  • k stands for kilo – which means “one thousand”.
  • W stands for Watt – which is a measure of power.
  • h stands for hour – which is a measure of time.

So kW means kilowatt which is 1000 Watts, a measure of power.

Notice that, if you like to keep pedantic electrical engineers like me happy, the correct way to write it is always with a small k and a capital W.

The size of a solar system is defined by its peak power, often denoted as kWp (the p standing for ‘peak’), e.g. a 1 kWp system can produce 1 kW of power per hour when operating in line with the testing parameters.

kWh stands for kilowatt-hour; a kWh is a measure of energy (not power).

If your solar panels (for example) continuously output 1kW of power for a whole 60 minutes, you will have produced 1 kWh of energy.

The amount of electricity you use (or generate) is defined in kWhs. e.g. “My solar system produced 4 kWh of electricity today!”

So at the highest level: kW measures power, and kWh measures energy.

Why is the difference between Energy and Power important?

  • Power is the rate at which work is performed or energy is converted
  • Energy is the ability to do work on objects

It is very common for people to mistakenly interchange the terms energy and power as if there is no difference. Most people do it all the time without noticing. It drives electrical geeks up the wall.

For example, if someone is talking about their electricity usage and says, “I used 8kW yesterday”, they probably mean that they used 8 units of electrical energy yesterday. In this case they should really say, “I used 8kWh yesterday”

Yeah, yeah I know what you are thinking: Who cares?

Well it is actually quite important if you are buying a solar system. If someone says they need a solar power system to produce 8kW, they might end up being quoted an 8kWp solar system. Which will cost about $24,990 + installation at today’s prices and produce about 32kWh per day.

If, what they actually meant was that they need one to cover an energy usage of 8kWh per day, then they really need a 2kW solar system which costs about $8,375.00 + installation at the time of writing!

So please don’t confuse kW and kWh. If you do you may end up with a solar system that is completely the wrong size!

Top tip for filtering out the worst solar salesmen: Ask them to explain the difference between a kW and kWh. If they get this wrong how on earth are they gonna understand your requirements? A lot of cold calling door knockers will fail this test in my experience.

The technical bit for those that are interested:

  • Energy – measured in Joules (J); energy is the capacity of something to do work.
  • Power – the rate at which energy is used; power is measured in Watts (W).
  • 1 Watt – the rate of energy usage, being 1 Joule every second (J/s).

Posted in Miscellaneous

Tilt Frame or Flush Mount Your Solar Panels?

Friday, April 20th, 2018
Should you put your panels on tilt frames?

Tilt frames are used to get solar panels to the optimum angle and maximise power output.
Here is really common dilemma:
“I’ve got 3 quotes for solar: The first company says my roof is at the wrong pitch and wants to charge me hundreds of dollars extra to put my solar panels on tilt frames to optimize the amount of electricity I get. The second mob say it is fine to just put the panels flush on my roof and the third guy says that, yes my roof isn’t at the perfect pitch, but the best solution is to mount them flush to the roof and simply add an extra solar panel to make up for any reduced power output.

Now I’m really confused! Help!”

The problem here is that there are two extremes of solar installers:

At one end of the spectrum you have “The Solar Purist”.
They are only happy if the solar panel is positioned for the absolute optimum power output – they are a perfectionist, highly technical, and have been in the industry since the dawn of solar, when solar panels cost 10 times what they do today.  They think a few hundred dollars is a small price to pay to squeeze a bit more power out of those precious solar panels.  And please, never, ever suggest to them that they use a non-German inverter.
Then at the other end of the scale – you’ve got the “She’ll Be Right” Solar Installer.

They just want to get the install done. If you’ve got a roof, and it doesn’t face south and it’s not completely shaded they’ll bang the panels on, and move on to the next job.We believe that the best installation for your home is somewhere in the middle

The best solution to maximize return on your investment.

You need to consider the financial consequences for each option and then decide whether tilt frames are a good investment or not.
So let’s look at a typical scenario where tilt frames would be an option and see which of our 3 original options makes the most sense from an economic perspective:

To Tilt or Not to Tilt – that is the question

How to work out if tilt frames make sense or not:
Imagine you have a house in Nelson with a North facing roof that has a very shallow slope of 10° and you want to install a 3kW system.The perfect tilt angle for solar panels is the same as the latitude of the install location. Nelson has a latitude of 41°.So therefore the panels should be of the Latitude.
So if we follow those guidelines, we’d have to use tilt frames for all our solar panels right?
Panels at the perfect Angle:
If we crunch the numbers , then we can quickly work out that 3kW of north facing solar panels at the perfect angle of 41° will produce 12.0kWh per day averaged over 1 year.
If we value our electricity at 25c per kWh, then that earns us $1095 per year.Panels at 10°
If we crunch the numbers for 3kW of North facing solar panels at only 10° then we discover that we get 11.6kWh per day which makes us $1058.How much do tilt frames cost?
Assuming our 3kW system uses 195W panels, the extra cost of tilting 16 x 195W panels should be around $450.So to make an extra $47 per year, we are going to be spending $450.About a 9 year payback.Whether you think this is a good investment is completely up to you. But your solar installer should give you the numbers so you can make an informed decision!

I personally wouldn’t bother, mainly because, if you use tilt frames on your roof, you can fit fewer panels on that valuable roof space.

Because you need to leave extra space between the panels so that one row of panels doesn’t cast a shadow on the row behind it. I also think that tilt frames are not so aesthetic to look at . But perhaps that is just me.

What about adding an extra panel?
The third option you have – is to make up for any lost power by simply adding an extra solar panel.
A few years ago, when panels were 5 x the price, this would have been an insane suggestion (and some old school solar installers still think it is a terrible waste!) but in 2012 it can make a lot of sense.

The cost of one extra 195W panel will be about $440. Installed flush to your roof, this 17 panel system will generate 13.0kWh per day and make us $1186 per year.

So your extra $440 investment is returning you an extra $169 per year compared to the 16 panel system mounted on tilt-frames at 41°.
I’d say that the extra panel is a much better investment that the racking.

The third installer was right!  (Oh! That’s us!) Call Current Generation today for common sense facts.

Note: One thing that you don’t want is completely flat panels (angle = 0°). You want them to slope at least 10° so that the rain flows down the slope and helps the panels self clean.

Posted in Miscellaneous